BEFORE THE PUBLIC UTILITIES COMMISSION OF THE
STATE OF CALIFORNIA

In the Matter of the Application of SOUTHERN CALIFORNIA EDISON COMPANY (U 338-E) for a Certificate of Public Convenience and Necessity for the Alberhill System Project. A.09-09-022

SOUTHERN CALIFORNIA EDISON COMPANY'S (U 338-E) REPLY TO PROTESTS TO THE SECOND AMENDED APPLICATION OF SOUTHERN CALIFORNIA EDISON COMPANY FOR A CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR THE ALBERHILL SYSTEM PROJECT

BETH A. GAYLORD
TAMMY JONES
LAUREN P. GOSCHKE
Attorneys for SOUTHERN CALIFORNIA EDISON COMPANY
2244 Walnut Grove Avenue
Post Office Box 800
Rosemead, California 91770
Telephone: (626) 302-6634
E-mail: Tammy.Jones@sce.com

Dated: June 22, 2020
Table Of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>III. DISCUSSION</td>
<td>3</td>
</tr>
<tr>
<td>A. The Commission Should Not Deviate from the CPUC’s Established</td>
<td>3</td>
</tr>
<tr>
<td>Procedure for Evaluating a CPCN</td>
<td></td>
</tr>
<tr>
<td>B. An Addendum to the EIR is Appropriate to Incorporate SCE’s</td>
<td>5</td>
</tr>
<tr>
<td>Additional Alternatives Analyses into the Proceeding</td>
<td></td>
</tr>
<tr>
<td>1. None of the Conditions Requiring a Supplemental EIR Exist</td>
<td>6</td>
</tr>
<tr>
<td>2. An Addendum to the Final EIR Satisfies CEQA’s Requirements</td>
<td>8</td>
</tr>
<tr>
<td>C. Costs Associated with Projects Other than Alberhill Are Outside the</td>
<td>9</td>
</tr>
<tr>
<td>Scope of this Proceeding</td>
<td></td>
</tr>
<tr>
<td>D. SCE Appropriately Developed Project Objectives and Responsive</td>
<td>10</td>
</tr>
<tr>
<td>Project Alternatives</td>
<td></td>
</tr>
<tr>
<td>1. SCE’s Project Objectives Are Appropriately Broad</td>
<td>10</td>
</tr>
<tr>
<td>2. SCE Appropriately Considered Feasible Alternatives That Met</td>
<td>11</td>
</tr>
<tr>
<td>the Project Objectives</td>
<td></td>
</tr>
<tr>
<td>3. SCE’s Methodology for Determining which Alternatives to Carry Forward is Appropriate</td>
<td>12</td>
</tr>
<tr>
<td>a) SCE’s methodology for selecting its alternatives is provided</td>
<td>12</td>
</tr>
<tr>
<td>in detail in its Planning Study.</td>
<td></td>
</tr>
<tr>
<td>b) SCE properly carried forward for analysis those alternatives</td>
<td>13</td>
</tr>
<tr>
<td>that met the project objectives.</td>
<td></td>
</tr>
</tbody>
</table>
Southern California Edison's Company’s (U 338-E) Reply to Protests to the Second Amended Application of Southern California Edison Company for a Certificate of Public Convenience and Necessity for the Alberhill System Project

Table Of Contents (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. TURN’s Arguments Regarding SCE’s Supplemental Analysis Are Without Merit</td>
<td>14</td>
</tr>
<tr>
<td>1. SCE’s supplemental analysis complies with D.18-08-26</td>
<td>15</td>
</tr>
<tr>
<td>a) SCE followed the requirements of the DRP to utilize the forecasts produced by the CEC’s IEPR</td>
<td>15</td>
</tr>
<tr>
<td>b) SCE’s Use of Battery Energy Storage Systems costs was appropriate</td>
<td>16</td>
</tr>
<tr>
<td>c) SCE analyzed non-wire alternatives beyond standalone or hybrid centralized BESS</td>
<td>17</td>
</tr>
<tr>
<td>d) SCE provides sufficient detail of outages to demonstrate a degradation in future reliability will occur if not addressed</td>
<td>18</td>
</tr>
<tr>
<td>F. FRONTLINES’ Arguments Regarding SCE’s Supplemental Analysis Are Wholly Unsupported and are Premised on a Fundamental Misunderstanding of System Planning</td>
<td>19</td>
</tr>
<tr>
<td>1. FRONTLINES’ Argument That System Tie-Lines Can Be Constructed Now Reflects a Fundamental Misunderstanding of System Planning</td>
<td>19</td>
</tr>
<tr>
<td>2. FRONTLINES’ Assertion That SCE’s Load Forecasts Do Not Provide A Basis For Supporting the ASP Need are Without Merit</td>
<td>21</td>
</tr>
<tr>
<td>a) SCE’s 10-year peak demand forecast utilizes the IEPR AAPV Forecast</td>
<td>21</td>
</tr>
<tr>
<td>b) SCE’s 30-year forecast is used solely to perform the cost-benefit analysis of alternatives to the ASP</td>
<td>23</td>
</tr>
</tbody>
</table>
Southern California Edison's Company’s (U 338-E) Reply to Protests to the Second Amended Application of Southern California Edison Company for a Certificate of Public Convenience and Necessity for the Alberhill System Project

Table Of Contents (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. The ASP Will Not Cause or Add to Any N-1 Violations That Wouldn’t</td>
<td>24</td>
</tr>
<tr>
<td>Otherwise Occur Regardless of Whether ASP Was Constructed.</td>
<td></td>
</tr>
<tr>
<td>G. Proposed Schedule ...</td>
<td>26</td>
</tr>
</tbody>
</table>

Attachment A Data Request Set FRONTLINES – SCE – 001, Question 04
Attachment B SCE response to Data Request Set FRONTLINES – SCE – 002, Question 12
Attachment C Data Request Set FRONTLINES – SCE – 002, Question 22
Attachment D SCE response to Data Request Set FRONTLINES – SCE – 002, Question 18
SOUTHERN CALIFORNIA EDISON COMPANY’S (U 338-E) REPLY TO PROTESTS TO THE SECOND AMENDED APPLICATION OF SOUTHERN CALIFORNIA EDISON COMPANY FOR A CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR THE ALBERHILL SYSTEM PROJECT

I.
INTRODUCTION

Pursuant to Rule 2.6 of the California Public Utilities Commission’s (CPUC or Commission) Rules of Practice and Procedure, Southern California Edison Company (“SCE”) provides the following reply to the protests (“Protests”) of the Public Advocates Office (“Cal Advocates”), The Utility Reform Network (“TURN”) and Forest Residents Opposing New Transmission Lines (“FRONTLINES”) regarding the Second Amended Application of Southern California Edison (U 338-E) for a Certificate of Public Convenience and Necessity (“CPCN”) for the Alberhill System Project (ASP or ASP Project).

II.
BACKGROUND

On September 20, 2009, SCE filed an Application for a Permit to Construct (“Application”) and a Proponent’s Environmental Assessment (“PEA”) for the ASP. On March 12, 2010, SCE filed an amendment to the Application titled Amendment To The Application of

On August 31, 2018, the CPUC issued Decision (D.) 18-08-026 (“the Decision”), which considered, in part, whether to approve the CPCN for the ASP. The Decision neither issued nor denied the CPCN for the ASP. Rather, ordering paragraph (“OP”) 4 of the Decision directed SCE to “supplement the ASP record with additional analyses of alternatives which may satisfy the needs of the Valley South System.” In response, SCE performed additional analyses to supplement the administrative record with quantitative and qualitative metrics to evaluate the ability of the ASP and each alternative under consideration to meet the needs of the Valley South System.

SCE provided these additional analyses to the service list and to Energy Division (“ED”) as Data Request Responses in May 2019, December 2019 and January 2020. SCE also held webinars with the public and ED to review the analyses and to answer questions regarding SCE’s findings. The additional analyses evaluate the ability of a wide range of project alternatives to effectively meet the project objectives and satisfy system planning criteria. SCE also evaluated all alternatives using a cost/benefit analysis based on forward-looking system performance metrics and a range of monetized and non-monetized risks.

On April 10, 2020, ALJ Yacknin issued an email ruling directing SCE to file: “(1) a compliance filing (of) its additional analyses of alternatives which may satisfy the needs of the Valley South System to supplement the record Application (A.) 09-09-022, pursuant to D.18-08-026; and (2) an amendment to its application consistent with its additional analyses of alternatives which may satisfy the needs of the Valley South System, including a corresponding amended PEA reflecting the additional analyses, as appropriate.” On May 11, 2020, SCE submitted a Second Amended Application and amendments to PEA (“Second Amendment to
PEA”) and filed a Motion to Supplement the Record with the additional analyses requested by ALJ Yacknin.

On June 10, 2020, SCE received protests from Cal Advocates, TURN and FRONTLINES. As discussed below, the arguments made by TURN, FRONTLINES and Cal Advocates are without merit and should be rejected in their entirety.

III.

DISCUSSION

A. **The Commission Should Not Deviate from the CPUC’s Established Procedure for Evaluating a CPCN**

TURN proposes the CPUC deviate from its typical review procedure and structure the proceeding into two “CPCN Phases” and one “EIR Phase.” In the first CPCN phase TURN would have the CPUC evaluate whether SCE has proven a need for the Alberhill System Project. Then, TURN would have the CPUC open an “EIR Phase” wherein the intervenors could weigh in on SCE’s alternatives analysis and propose additional alternatives for the CPUC’s review. TURN proposes that the second phase of the CPCN proceeding begin only after the EIR phase is complete.1 In the second phase of the CPCN proceeding the CPUC would, upon a finding of need in phase one, review SCE’s supplemental alternative analysis to resolve any outstanding issues in the CPCN proceeding.2

TURN is asking for a deviation from the established process the CPUC uses to evaluate whether to issue a CPCN. TURN cites to A.15-09-013 as proof that its request is neither unusual nor unique. However, the approach taken in A.15-09-013 was atypical, and the Commission described the bifurcated schedule authorized in that proceeding as “unique.”3 In that proceeding

1 TURN Protest to Second Amended Application, pp. 2-3.
2 TURN Protest to Second Amended Application, pp. 2-3.
the Commission determined that a deviation from the regular CPCN process was necessary to remedy urgent public safety issues associated with an aging gas pipeline. The applicant requested that the Commission expedite the need portion of the proceeding to ensure the applicant could timely comply with a state law that mandated the applicant resolve the public safety issue as soon as practicable. The law required the applicant take one of the following actions: test, replace or remove the pipeline. Consistent with the mandate that the applicant remedy the safety issue as soon possible, the CPUC allowed a bifurcated the proceeding to determine in Phase 1 which action would best serve the public convenience and necessity. This approach should be viewed as the exception, and not the rule, as TURN posits.

TURN fails to provide a credible argument as to what unique aspect of this proceeding justifies deviation from the Commission’s standard CPCN evaluation process. TURN states that its proposed phased approach would enhance administrative efficiency by ensuring that the Phase 1 need determination would inform and focus the alternatives analysis in the EIR revisions but fails to explain how the existing process fails to do the same.\(^4\)

It is reasonable to assume that the CPUC considered administrative efficiency when it established its process for evaluating CPCN applications and found the established process to be sufficiently efficient. TURN’s proposal would require the Commission to issue a new Scoping Ruling, as the existing ruling directs the parties to consider need contemporaneously with the rest of the Case-In-Chief.\(^5\) Although complex and sometimes cumbersome, the existing CPCN evaluation procedures are logical and proven. Commission, staff, and parties are familiar with the process. The unusual nature of TURN’s proposal is more likely to confuse and delay the administrative process than increase efficiency. Because TURN provides no compelling argument as to why the Commission should deviate from its existing procedure for evaluating need, the CPUC should proceed with the Case-in-Chief as planned.

\(^4\) TURN Protest to Second Amended Application, pp. 3, 18.
\(^5\) See Assigned Commissioner’s Scoping Memo and Ruling (June 19, 2017) pp. 3-4.
B. **An Addendum to the EIR is Appropriate to Incorporate SCE’s Additional Alternatives Analyses into the Proceeding**

TURN and FRONTLINES argue that the CEQA portion of the proceeding should be reopened to allow for public input on and environmental review of the alternatives SCE submitted in response to OP 4 of D.18-08-026, and as a result the Commission is prohibited from preparing an Addendum to the FEIR and should instead produce a Supplemental EIR. As described in SCE’s amended application and below, it is completely appropriate under CEQA for the CPUC to issue an Addendum to the Final EIR to incorporate the information provided in SCE’s additional analysis because the conditions requiring a subsequent or supplemental EIR do not exist.

Pursuant to CEQA, when a project, such as Alberhill, has an existing certified EIR, no subsequent EIR shall be prepared for that project unless the lead agency determines, on the basis of substantial evidence in light of the whole record, that one or more of the following conditions exist: (1) there have been substantial changes to the Proposed Project, (2) substantial changes to the project circumstances, or (3) availability of new information of substantial importance. In each case, the circumstance must be accompanied by “new significant environmental effects or a substantial increase or reduction in the severity of previously identified significant effects.” A supplemental EIR may be prepared only if the circumstances for a subsequent EIR exist. If none of these conditions exist the lead agency “shall prepare an addendum to a previously certified EIR.”

8 CEQA Guidelines § 15162(a).
9 CEQA Guidelines §15163.
10 CEQA Guidelines § 15164(a).
1. **None of the Conditions Requiring a Supplemental EIR Exist**

 As demonstrated in this Second Amended Application and the accompanying Second Amendment to PEA, SCE proposes no changes to the Alberhill Project and none of the additional alternatives or new information included in the supplemental analyses result in new significant environmental effects associated with the Alberhill Project, an increase in previously identified environmental effects associated with the Alberhill Project or a significant reduction in previously identified significant environmental impacts associated with the Alberhill Project.

 The changes and additions made in the Second Amendment to PEA describe additional alternatives that SCE considered to meet project objectives and SCE’s analyses show that none of the alternatives that meet the basic project objectives result in a substantial reduction in environmental impacts as compared to the ASP. As a result, the additional information provided by SCE does not trigger any of the conditions under Section 15162(a) of the CEQA guidelines that require the preparation of a supplemental EIR and the CPUC may incorporate the changes in the Second Amendment to PEA to reflect the additional alternatives analyses performed by preparing an Addendum to the previously certified FEIR.

 TURN argues that the CPUC is prohibited from preparing an Addendum, but provides no evidence or legal precedent to support its argument, it merely recites the CEQA guidelines for determining whether the CPUC should prepare an Addendum or Supplemental EIR and concludes that the CPUC should prepare a supplemental EIR in lieu of an Addendum. TURN claims a supplemental EIR is required as a “matter of due process”\(^\dagger\) because only a supplemental EIR ensures that the public can provide input on the additions to the EIR. However, TURN and others have already had an opportunity to provide input on the additions to the EIR. As stated above, preparation of an Addendum is appropriate when the additions to the EIR result in no change to the significant environmental effects associated with the project and no alternative would substantially reduce any significant effects on the environment. Because the information

\(^\dagger\) TURN Protest to Second Amended Application, p. 17.
added to the EIR through an Addendum does not change the analysis associated with the proposed project, there is no change to the proposed project, and therefore there is no reason that TURN and others would need a second opportunity to provide input on the same project. Thus, the argument that an Addendum would deprive TURN and others of due process is moot.

FRONTLINES claims new information from the supplemental analysis that was not available at the time the EIR was certified shows that Alternative BB, which the EIR determined was infeasible because SCE lacked the capability to deploy sufficient local storage facilities, is now feasible. FRONTLINES argues that Alternative BB, if adopted, would result in significantly less environmental impacts than the ASP, and the viability of this previously inviable alternative triggers the preparation of a Supplemental EIR.

FRONTLINES claims that Alternative BB is now feasible because the 110 MW of storage needed to operationalize the alternative can be added to the system by 2021. This claim is inaccurate. Nowhere has SCE indicated that it can add 110 MW of storage to the system by 2021. FRONTLINES assertion may rely on the Centralized BESS alternative included in the Planning Study, but SCE has been clear both in the Planning Study (Item C, Section 1.0) and subsequent data request responses that all alternatives in the Planning Study were simply assumed to be in-serviced at the project need date of 2022 (or 2021 when considering the Spatial Base forecast), to ensure that alternatives’ system performance merits were not discounted by subjective judgements on project schedule. None of the alternatives can, in fact, be implemented by 2021. Alternative BB remains infeasible because it does not meet project objectives because it does not provide system tie-lines. Because this alternative remains infeasible, it does not impact the CPUC’s ability to prepare an Addendum.

FRONTLINES further argues because the SDG&E alternative is “radically” different from previously considered alternatives, a supplemental EIR is required to evaluate this

12 FRONTLINES Protest to Second Amended Application, p. 6.
13 Id.
However, the addition of a new alternative after the EIR has been certified does not alone trigger the preparation of a supplemental EIR. Under the CEQA guidelines the new alternative must be “considerably different than those analyzed in the previous EIR” and “must substantially reduce one or more significant effects on the environment.”15 The SDG&E alternative meets neither of these criteria because the SDG&E alternative is substantially similar to other alternatives analyzed in the previous EIR (\textit{i.e.} Alternative G – Auld System Project) and because the SDG&E alternative would not substantially reduce one or more significant environmental effects. Therefore, the addition of the SDG&E alternative to the EIR does not trigger preparation of a Supplemental EIR.

\textbf{2. An Addendum to the Final EIR Satisfies CEQA’s Requirements}

CEQA establishes that an Addendum to a previously certified EIR is appropriate when “some changes or additions are necessary but none of the conditions described in Section 15162 calling for preparation of a subsequent EIR have occurred.”16 SCE proposes no changes to the Proposed Project, and SCE’s additional analyses result in no new or increased environmental impacts from those defined in the certified EIR. Because none of the conditions that would require a Supplemental EIR exist, an Addendum to the Final EIR is the appropriate method for incorporating SCE’s additional analysis into the CEQA document.

TURN argues that it is too early to conclude that an Addendum is appropriate, and suggests that the CPUC wait until the reopened EIR phase has concluded before it determines whether the conditions necessary for a Supplemental EIR exist.17 As explained in Section A, above, TURN’s proposal to bifurcate the proceeding is an unnecessary departure from Commission practice, and based on the information SCE submitted in the Second Amended

14 FRONTLINES Protest to Second Amended Application, p. 6.
15 CEQA Guidelines, §15162(a)(3)(D).
16 CEQA Guidelines, § 15164(a).
17 TURN Protest to Second Amended Application, p. 15.
Application and Second Amendment to PEA, the Commission may appropriately prepare an Addendum to the FEIR.

C. **Costs Associated with Projects Other than Alberhill Are Outside the Scope of this Proceeding**

SCE’s Application and testimony provide justification for the costs associated with the Alberhill Project and demonstrate that those costs are prudent and reasonable and that it is in the public’s convenience and necessity to build the Alberhill Project. TURN argues that the CPUC should condition approval of the Alberhill Project not only on the costs associated with the Alberhill Project, but also the costs associated with the SCE’s general rate case (“GRC”) and its wildfire mitigation program, and also consider the impact costs associated with these programs may have on ratepayers affected by the COVID-19 crisis.\(^\text{18}\)

The proper scope of this proceeding is to determine the maximum prudent and reasonable cost associated with the Alberhill project.\(^\text{19}\) SCE has provided both written and oral testimony supporting its cost estimate for the ASP.\(^\text{20}\) TURN’s suggestion that the prudency of the costs of the Alberhill Project be evaluated in conjunction with costs associated with either the GRC or wildfire mitigation is inappropriate, as those proceedings are outside the scope of the Alberhill proceeding. Additionally, nothing in Pub. Util. Code § 1005.5, which sets forth the guidelines for evaluating project cost, would suggest that the CPUC consider costs being evaluated in other proceedings in its evaluation of the Maximum Prudent and Reasonable Cost (“MPRC”) of the Alberhill Project. Therefore, because the costs associated with those proceedings have no bearing on the Alberhill Project, any attempt by TURN to raise issues of cost associated with the GRC or wildfire mitigation in the Alberhill proceeding should be rejected.

\(^\text{18}\) TURN Protest to Second Amended Application, pp. 4-5.

\(^\text{19}\) Scoping Memo Issue No. 9.

\(^\text{20}\) *See* SCE Opening Brief, pp. 23-26; SCE Reply Brief pp. 43-47; *see also* Cost Testimony of Gordon Tomaske (submitted July 7, 2017).
TURN goes on to argue that the CPUC should consider the impact of the approval of the ASP on customer rates and asks whether a rate increase associated with approval of the ASP is justified at a time when some utility customers may be suffering economic hardships related to the COVID-19 pandemic. While SCE is certainly sensitive to the impact that COVID-19 may have on its customers, SCE is responsible for providing its customers with safe and reliable service. SCE has proposed the ASP because its construction is necessary to ensure that SCE can continue to serve electrical demand requirements and provide operational flexibility in the Valley Substation area. Construction of the ASP will ensure that safe and reliable electric service is available to meet customer electrical demand without overloading the existing electric facilities. Any proposed costs will be reviewed by the Commission to determine the MPRC of the Alberhill Project. This will ensure that any costs associated with the Alberhill Project are prudent and reasonable.

D. **SCE Appropriately Developed Project Objectives and Responsive Project Alternatives**

1. **SCE’s Project Objectives Are Appropriately Broad**

FRONTLINES argues that the project objectives are too narrowly defined such that they preclude the consideration of a reasonable range of alternatives as required by CEQA.\(^{21}\) SCE included seven broad project objectives in its original PEA.\(^{22}\) The CPUC narrowed these objectives to evaluate alternatives in its FIER. In conducting its supplemental analysis, SCE relied upon its original set of broad project objectives established in its original PEA rather than the narrower project objectives established in the FEIR. In doing so, SCE ensured that it considered an appropriately broad scope of project alternatives.

\(^{21}\) FRONTLINES Protest to Second Amended Application, p. 7.

\(^{22}\) SCE PEA, 1-13.
2. **SCE Appropriately Considered Feasible Alternatives That Met the Project Objectives.**

The purpose of an alternatives analysis is to “identify feasible alternatives that would attain most of the basic objectives of the project being proposed while avoiding or substantially reducing at least of one its significant effects.”\(^{23}\) However an EIR “need not consider every conceivable alternative to a project. Rather it must consider a reasonable range of potentially feasible alternatives that will foster informed decision-making and public participation. An EIR is not required to consider alternatives which are infeasible.”\(^{24}\)

SCE provided the CPUC with a robust set of alternatives that proposed a number of different approaches to address the project objectives. SCE developed alternatives that transfer load to new 500 kV or 230 kV source substations (similar to ASP), that transfer load to adjacent systems internal to SCE, and alternatives that transfer load to a substation sourced by a neighboring utility. All of these transfers address some amount of capacity need, while creating the system tie-lines to transfer additional load under abnormal system conditions to address reliability and resiliency needs (basic objectives of the project).

TURN argues that SCE failed to consider alternatives that could have met some, if not all, of the Alberhill Project objectives. For example, TURN states that SCE failed to consider an alternative that would increase reliability and resiliency, but not provide additional capacity. TURN argues that SCE should have considered alternatives that only meet a subset of the project objectives, so the Commission would not be limited to choosing between an alternative that meets all the project objectives or no moving forward with no project at all.\(^{25}\)

It is appropriate for SCE to develop alternatives that respond to project objectives. While CEQA allows for the development of alternatives that do not meet every single project objective,

\(^{23}\) Pub. Resources Code, § 21002; CEQA Guidelines, § 15126.6.

\(^{24}\) CEQA Guidelines, § 15126.6(a).

\(^{25}\) TURN Protest to Second Amended Application, pp.13-14.
it also directs the applicant focus on those alternatives that “feasibly attain most of the project’s basic objectives.”26 SCE focused on developing solutions that would feasibly attain the majority (if not all) of the project’s objectives, and screened out alternatives that did not. In doing so, and in compliance with CEQA, SCE identified those alternatives that could take advantage of synergies between the various scope elements and generally produced integrated solutions that are more efficient and cost-effective than several separate scope elements which each address a singular system need.

3. **SCE’s Methodology for Determining which Alternatives to Carry Forward is Appropriate.**

TURN and FRONTLINES argue that the process SCE used to determine which of the 10 system scenarios to carry forward in the amended PEA is flawed. Specifically, they argue that SCE did not properly explain how it measured alternatives against one another to determine which would be brought forward into the supplemental analysis; and that SCE improperly screened out alternatives that should have been carried forward into the analysis.

a) **SCE’s methodology for selecting its alternatives is provided in detail in its Planning Study.**

SCE clearly described its methodology for measuring and selecting alternatives in both the additional analyses submitted to the CPUC and in its Second Amended Application. As described in SCE’s Second Amended Application,27 the alternatives included in SCE’s supplemental analysis are designed to address the stated project objectives; in particular, the ability to satisfy the electrical needs of the Valley South System for the 10-year planning horizon. Accordingly, SCE’s Planning Study assessed the ability of the alternatives to meet the capacity, reliability and resiliency needs of the region. SCE then used these analyses to evaluate how the alternatives meet the project need as compared with the ASP.

26 CEQA Guidelines §15126.6(a).

27 SCE Second Amended Application (filed May 11, 2020), p. 5.
TURN argues that SCE did not explain how it used improved capacity, reliability and resiliency to measure the alternatives against one another. However, that process was explained in detail in SCE’s Planning Study.\(^{28}\) As described, in performing the alternatives analysis, SCE does not perform subjective weighting of capacity improvement versus the reliability/resiliency improvement. Rather, all benefits are measured by the same objective parameter (Expected Energy Not Served (“EENS”)) that is derived from power system analyses, summed in the respective metrics and monetized using the same customer Value of Service data. Thus, the weighting is entirely driven by the data which are in turn solely reflective of impact and cost of service interruption to customers.\(^{29}\)

b) **SCE properly carried forward for analysis those alternatives that met the project objectives.**

The Planning Study conclusions support the need for a project, and more specifically, support selecting a comprehensive solution that both addresses the transformer capacity shortfall and provides adequate system tie-lines to another system to improve reliability and resiliency. The parties’ argument that SCE should have considered an alternative that would add an additional 500/115 kV transformer at Valley Substation to increase capacity capability ignores established CEQA case law\(^{30}\) holding that only those alternatives that meet the project objectives need to be considered. As explained in testimony, briefs, and in SCE’s supplemental analysis, this alternative does not meet project objectives as it does not provide adequate system tie-lines to another system in order to improve reliability and resiliency. In addition, SCE has explained throughout this proceeding that the use of the spare 500/115 kV transformer when electric demand is high is only a short-term mitigation rather than a solution to be relied on for the long-

\(^{28}\) See Item C (Planning Study), attached as Exhibit “C” to SCE’s Motion to Supplement the Record (filed May 11, 2020).

\(^{29}\) See id.

\(^{30}\) CEQA Guidelines §15126.6(a).
term. The spare transformer is a transformer that is shared between the Valley North System and the Valley South System and its current use as mitigation is not without risks.31 It would be imprudent and poor planning practice to gamble on its continued use to address capacity issues.

Additionally, the creation of system tie-lines between Valley North and South is not a “No Project Alternative.” FRONTLINES asserts in numerous cases that transferring load from Valley South to Valley North is a simple, almost trivial matter. In reality, implementing a project of this nature requires constructing several new 115 kV subtransmission lines in a congested area in the vicinity of the Valley Substation that would ultimately be transferred from Valley South to Valley North. Thus, it is unreasonable to characterize any Valley South to Valley North load transfer project as a “No Project Alternative.” The No Project Alternative not only inadequately addresses existing and reasonably projected capacity issues, it also does nothing to address the reliability concerns and violation of planning guidelines to have system tie-lines, and does nothing to improve the resiliency of the electric grid in the area.

FRONTLINES’ arguments that SCE improperly screened out other alternatives such as the Valley South to Valley North (Alternative F), Alternative BB, and the Menifee Alternative (Alternative E), are similarly unavailing because as discussed above, those alternatives do not meet the project objective of providing adequate system tie-lines to improve reliability and resiliency.

E. **TURN’s Arguments Regarding SCE’s Supplemental Analysis Are Without Merit.**

A large portion of TURN’s Protest is repetitive of arguments it made previously during the case-in-chief portion of this proceeding, that were previously addressed and rejected, and are devoid of any additional justification to demonstrate why their arguments should be now afforded any additional weight. For example, TURN continues to suggest that SCE understates the impact of Distributed Energy Resources (“DERs”) on peak demand and energy consumption. TURN also continues to argue that SCE should have considered more non-wires alternatives,31 See Item H (Identification of Capital Investments) attached as Exhibit “H” to SCE’s Motion to Supplement the Record (filed May 11, 2020).
regardless of whether those alternatives meet project objectives. As discussed below, TURN’s arguments related to SCE’s supplemental analysis are entirely without merit.

1. **SCE’s supplemental analysis complies with D.18-08-26**

 In response to the Decision, SCE provided the CPUC with a robust supplemental analysis of alternatives that may meet the needs of the Valley South System. This analysis included, among other items: updated load forecasts; a comprehensive Planning Study; a cost-benefit analysis of alternatives; a detailed justification and ranking of recommend solutions; and an analysis of electrical reliability performance for the Valley systems. Despite the exhaustive detail provided in SCE’s supplemental analysis, TURN simply claims without providing any justification that it fails to comply with the Decision. Because TURN does not provide any evidence as to why the analysis does not comply with the Decision, TURN’s arguments should not be afforded any weight.

 a) **SCE followed the requirements of the DRP to utilize the forecasts produced by the CEC’s IEPR.**

 TURN argues that it “appears” SCE understated the impact of DERs on peak demand and energy consumption. However, the record contains ample evidence that SCE has not understated the impacts of DERs. As described in SCE’s Rebuttal Testimony, SCE’s 10-year forecast utilizes the Integrated Energy Policy Report (“IEPR”) California Energy Demand (“CED”) forecast published by the California Energy Commission (“CEC”) for both base demand load growth and for DERs.\(^{32}\) These forecasts must then be disaggregated to the discrete distribution circuit level. This allows for other planning activities and analyses to occur, including the Integration Capacity Analysis (“ICA”) determination, which is then published for use by developers considering adding DERs to distribution circuits.

 There are several levels of the electric grid where these planning activities take place. These are generally defined by the locations where voltage transitions occur, system design

\(^{32}\) SCE Rebuttal Testimony (McCabe), at pp. 13-14.
changes occur, and when individual system elements get aggregated to a common source. For example, SCE aggregates the radial distribution circuit level data to its source substation for adequate capacity and resource planning at the distribution substation level. SCE then uses the distribution substation loading values for input in evaluating the performance of the networked subtransmission voltage level of the source lines to the distribution substations. The distribution substation loading levels are then aggregated to the radial source transmission substation loading level to evaluate the adequacy of its capacity against demand. Finally, the transmission substation loading values are used by the CAISO to evaluate the performance of the CAISO-controlled bulk electric system.

The CEC-produced IEPR forecasts are used to determine what the SCE-system level demand and DERs projected values are. This disaggregation process of the IEPR forecasts are peer-reviewed and accepted by the Distribution Forecasting Working Group (“DFWG”). Despite TURN’s arguments to the contrary, SCE has not understated the impact of DERs on peak demand and energy consumption, but rather followed the requirements of the DRP to utilize the forecasts produced by the CEC’s IEPR forecasts.

b) **SCE’s Use of Battery Energy Storage Systems costs was appropriate.**

TURN asserts that SCE incorrectly used inflated Battery Energy Storage System (“BESS”) costs. However, as described in SCE’s supplemental analysis, SCE’s BESS cost model was developed using accepted industry sources, and includes estimates for battery, inverter and balance-of-plant costs, as well as interconnection facilities to connect to the distribution system. In addition, the model assumes a declining cost curve for batteries and inverters which is assumed to stabilize in 2030. SCE recognized the uncertainty associated with future battery costs and performed a sensitivity analysis in which BESS costs were assumed to

33 These industry sources include Lazard’s Levelized Cost of Storage Analysis; and Pacific Northwest National Laboratory “Energy Storage Technology and Cost Characterization Report.
be 50% of those determined from SCE’s BESS cost model. These results were taken into consideration in developing SCE’s recommendations to address the needs of the Valley South System.

c) **SCE analyzed non-wire alternatives beyond standalone or hybrid centralized BESS.**

TURN also contends that SCE did not adequately analyze non-wires alternatives beyond standalone or hybrid centralized BESS. SCE’s approach in developing alternatives to the Alberhill System Project was in general to transfer substations out of the Valley South System to adjacent subtransmission systems or to new systems sourced by transmission lines surrounding the Valley South System. In doing so, the initial capacity needs of the system are met, and system tie-lines are created as a result of the reconfiguration of lines required to implement the transfer. DERs can provide sufficient capacity relief but can be ineffective in improving reliability and resiliency performance for extended planned or unplanned outages within the subtransmission system, and they are not a substitute for system tie-lines. DERs, especially BESSs, also have temporal constraints that are not a concern for conventional system tie-lines. Since BESSs act as a generation asset with a finite capacity, they cannot always be relied upon to provide the relief necessary to recover from random and unexpected system outages. DERs would need to maintain adequate state of charge to provide generation, while system tie-lines can indefinitely transfer load to adjacent systems, thus providing operators ample time to address problems and restore the system to normal conditions.

As explained in SCE’s Planning Study centralized and distributed BESSs were used as a surrogate for demand side management (“DSM”) programs and all other types of DERs. From a system perspective, energy storage and other DERs similarly serve to reduce system loading at

34 The BESS sensitivity analysis is further explained in SCE’s response to CPUC Data Request 1, DG-C-5.

35 See Item C (Planning Study), attached as Exhibit “C” to SCE’s Motion to Supplement the Record (filed May 11, 2020).
the level in the system in which they are installed, and BESS represents a non-wire alternatives ("NWA") option with minimal uncertainty from a cost and implementation risk standpoint. SCE analyzed five hybrid (combination BESS and conventional (wires-based) scope) alternatives and one NWA alternative in the cost-benefit analysis. Of these six alternatives, three are less expensive than the ASP, but provide limited reliability and resiliency to the Valley South System due to their ineffective system tie-lines. The NWA alternative “Centralized BESS in Valley South”, which is more expensive than the ASP, is a pure BESS-based solution that does not include scope for a system tie-line and therefore does not meet project objectives. However, as detailed in SCE’s Planning Study, this alternative was carried forward to study the relative performance of a standalone BESS and demonstrate the benefit of system tie-lines offered by other alternatives.

d) **SCE provides sufficient detail of outages to demonstrate a degradation in future reliability will occur if not addressed.**

TURN next claims that SCE’s planning analysis is inconsistent with its historical outage data and customer outages because SCE’s historical data shows no outages from 2015-2018. As stated in SCE’s supplemental analysis, a transmission related outage in 2014 occurred that caused an interruption of electrical service to customers in the Valley South System. This root cause category indicates that a transmission substation or transmission line outage caused an interruption of service.36 As also noted in SCE’s supplemental analysis, the System Average Interruption Duration Index (“SAIDI”) and System Average Interruption Frequency Index (“SAIFI”) reliability indices are primarily influenced by events at the distribution system level and are less informative for planning at the subtransmission system level.37

36 *See Item E (Analysis of outages), attached as Exhibit “E” to SCE’s Motion to Supplement the Record (filed May 11, 2020).*

37 *Id.; see also, Item D (Analysis of electric reliability performance), attached as Exhibit “D” to SCE’s Motion to Supplement the Record (filed May 11, 2020).*
Furthermore, the past reliability performance of a system, and its performance relative to other systems is not indicative of future reliability performance. The need for a project in the Valley South System is driven by the current lack of system tie-lines and the forecasted capacity overload in 2022. SCE’s analysis of the “No Project” scenario has clearly demonstrated a decrease in reliability performance starting in 2022, when the transformer capacity of the Valley South System is forecast to be exceeded.

F. FRONTLINES’ Arguments Regarding SCE’s Supplemental Analysis Are Wholly Unsupported and are Premised on a Fundamental Misunderstanding of System Planning.

FRONTLINES’ claims that the ASP is not needed from a capacity, reliability and resiliency perspective is based solely upon its unsupported opinion that other alternatives, if not constrained by limiting the number of substations that are transferred, would be more robust than ASP. These claims are inconsistent with the rigorous planning and power systems analysis provided by SCE, are based on mathematical errors and misapplication of planning criteria, and reflect a misunderstanding of project objectives, system planning and fundamental elements of resiliency.

1. FRONTLINES’ Argument That System Tie-Lines Can Be Constructed Now Reflects a Fundamental Misunderstanding of System Planning.

FRONTLINES continues to assert that the creation of system tie-lines should not be considered a project objective because SCE already possesses the ability to construct these lines. This assertion, however, ignores the fact that effective, useful, and operational flexible system tie-line creation involves more than just merely creating and constructing tie-line connections. Rather, it requires thoughtful power system design engineering, including the use of power flow analysis, and requires the consideration of additional factors such as licensing and permitting requirements, cost-effectiveness, timing to implement, environmental impacts, and expected benefits.
Radial system design differs from the topology of networked facilities, and each has benefits and drawbacks specifically related to cost and reliability.38 The benefits of radial system designs are that they can be less expensive to construct; will generally have less short-circuit duty concerns; have protection schemes that are typically less complex and expensive; can be planned for in relatively simple manner; and they generally operate in isolation from the rest of the grid as it relates to imparting impacts on the bulk electric transmission system.

By contrast, the drawback of a radial system design is in its potential concern for reliability if adequate system tie-lines are not provided. Since there is a single point of interface (a transmission substation) with the bulk electric transmission grid, the electrical demand served downstream can be subject to reliability issues if there are significant outages or failures of equipment at the transmission substation interface. A means to mitigate this is to ensure the radial system has system tie-lines to adjacent radial systems so that some of the electrical demand can be transferred under planned or unplanned events within the system. This does not suggest that outages would be prevented should unplanned events occur, rather it recognizes the outages that may occur could be mitigated and the impacts minimized by load transfers which would restore service and limit the outage durations. Therefore, if a system is designed as a radial system, sound engineering principles dictate that it should be planned for and constructed with system tie-lines.39

\begin{itemize}
\item[38] A radial system is one that is provided power from a single source on the transmission system. A networked system is provided power from multiple transmission and subtransmission source connections.
\item[39] As mentioned in SCE’s Planning Study, SCE recognized that when the Valley System was split into two distinct and separate electrical systems in 2004, the system tie-lines it had would remain on the Valley North System, leaving the Valley South System without any tie-lines. The work performed to split the systems was exempt from GO 131-D licensing and permitting because it occurred within the existing disturbed substation site. The urgency to meet the extraordinary load growth occurring at the time did not allow for additional scope to be included to address the lack of system tie-lines because that scope would not be exempt from GO 131-D and would instead require licensing and permitting. SCE therefore endeavored to identify and evaluate appropriate and comprehensive solutions to address both the capacity and reliability needs of the system, while also acknowledging that the system tie-line creation would take some time and result in some risk and vulnerability to the Valley South System while the ASP was developed and licensed. (See Item C (Planning Study) attached as Exhibit “C” to SCE’s Motion to Supplement the Record (filed May 11, 2020).
FRONTLINES’ assertion that the construction of system tie-lines from Valley South to Valley North can be simply a “No-Project Alternative" demonstrates a fundamental misunderstanding of the complexities involved with constructing these system tie-lines. Implementing a project of this nature requires the construction of several new subtransmission lines in a congested area in the vicinity of the Valley Substation, and in populated areas in the vicinity of the substations that would ultimately be transferred from Valley South to Valley North. SCE’s Planning Study presents a version of this alternative that was intended to transfer the minimum amount of load needed to satisfy SCE’s 10-year forecast. This limited scope has substantial complexity, would clearly require licensing, and falls short of meeting the project objective of having system tie-lines capable of transferring additional load from Valley South to Valley North in the event of planned or unplanned outages in Valley South. Thus, it is clearly unreasonable to characterize any Valley South to Valley North load transfer project as a “No Project Alternative.”

2. **FRONTLINES’ Assertion That SCE’s Load Forecasts Do Not Provide A Basis For Supporting the ASP Need are Without Merit.**

FRONTLINES continues to argue that SCE’s load forecasts do not support the need for ASP. Because these arguments are premised on a lack of understanding of system planning and are wholly unsupported by any meaningful evidence to the contrary, they should be rejected in their entirety.

a) **SCE’s 10-year peak demand forecast utilizes the IEPR AAPV Forecast**

In response to the argument that SCE’s 10-year forecast does not incorporate the IEPR Additional Achievable Photovoltaic (“AAPV”) forecast, SCE has consistently confirmed to
FRONTLINES\(^{40}\) that it utilizes the IEPR California Energy Demand (“CED”) forecast published by the California Energy Commission and that SCE does incorporate the IEPR AAPV forecast into its 10-year forecast for the Valley South System.\(^{41}\) SCE has also restated in data request responses to FRONTLINES (attached hereto) that SCE utilizes disaggregation methods developed by the DFWG that are peer and stakeholder reviewed, and that are described in detail in SCE’s 2019 Grid Needs Assessment (“GNA”).\(^{42}\) SCE also does not rely on a separate “PV dependability” analysis in lieu of the IEPR AAPV forecast as FRONTLINES incorrectly asserts. Rather, SCE incorporates the IEPR AAPV forecast, and describes the methodology by which this is performed in detail in the 2019 GNA.

Similarly, FRONTLINES’ argument that SCE’s reliance on its photovoltaic (“PV”) dependability analysis is unsupported and unreasonable is without any justification. SCE, properly and consistent with industry practice, incorporates peak demand reductions due to solar PV installations. Solar PV peak output occurs during periods of maximum solar irradiation (i.e., in the middle of the day), while peak electrical demand generally occurs during the time of day when people are arriving home from work (late afternoon to evening). Therefore, it is appropriate for SCE to use hourly solar irradiance curves developed for each of its regions (using solar PV output data from installations located within each region specifically) to determine an appropriate output amount for a given hour of the day of the installed nameplate PV capacity in that region. For the Valley South System, during the time periods of typical peak demand, this amount is approximately 12% of the total installed nameplate amount of solar PV. All assumptions that SCE uses to determine this value are supported by basic and accepted science,

\(^{40}\) See SCE response to Data Request Set FRONTLINES – SCE – 001, Question 04, attached hereto as Attachment “A”; see also, SCE response to Data Request Set FRONTLINES – SCE – 002, Question 12, attached hereto as Attachment “B”; see also, Data Request Set FRONTLINES – SCE – 002, Question 22, attached hereto as Attachment “C”.

\(^{41}\) See SCE response to Data Request Set FRONTLINES – SCE – 002, Question 18, attached hereto as Attachment “D”.

\(^{42}\) See id.
as well as data collected from actual solar PV systems installed in SCE’s service territory and are neither unsupported nor unreasonable. Moreover, FRONTLINES’ argument is premised on a reference that cites 70% PV efficiency during a period of system peak power demand. This reference is taken out of context in that it represents a single specific occurrence in a different electrical system (not Valley South), with a customer load mix that is significantly different than that of Valley South (largely commercial/industrial, whereas Valley South is predominately residential), was documented during the period of peak demand which occurred much earlier in the day (14:00 versus around 17:00), and with a solar irradiation profile that is different from Valley South.

b) **SCE’s 30-year forecast is used solely to perform the cost-benefit analysis of alternatives to the ASP.**

FRONTLINES contends that SCE’s 30-year forecast should be afforded little weight by the CPUC because it is highly speculative and provides an insufficient basis for approving a project. However, as noted in SCE’s supplemental analysis, the basis for the ASP need is the 10-year load forecast, and not the 30-year forecast.\(^{43}\) Rather, the 30-year forecast was used solely to perform the cost-benefit analysis of alternatives to the ASP as directed by the Decision. SCE chose a 30-year forecast primarily because this time frame roughly corresponds to the economic life of conventional transmission and distribution assets. SCE recognized the greater uncertainty in a long-term forecast in part due to the dynamic nature of California’s energy landscape, and included the load forecast sensitivity analyses around the baseline (Spatial Effective PV) forecast to study the relative performance of the system alternatives to each other and to the ASP. Further, SCE presented results on a short-term horizon\(^{44}\) (2028) and a long-term horizon (2048) to allow for the appropriate consideration of the advantages and disadvantages of more robust,

\(^{43}\) *See*, Item C (Planning Study), attached as Exhibit “C” to SCE’s Motion to Supplement the Record (filed May 11, 2020).

\(^{44}\) *Id.* at Table 6-1 and Table 6-2.
long-term solutions versus the potential adaptability offered by lower cost, shorter-term solutions.

FRONTLINES also makes vague and unsupported claims that SCE’s 30-year forecast does not capture important load modifiers and assumes unrealistic build-out profiles, but does not state what additional load modifiers should be captured. The Spatial Effective PV forecast (or 30-year forecast) incorporates all relevant load modifiers, including: Additional Achievable PV, Electric Vehicles, Additional Achievable Energy Efficiency, Energy Storage, and Load Modifying Demand Response. These load modifiers are also captured in SCE’s 10-year forecast, and the forecasting methodology is peer and stakeholder reviewed by the DFWG.

Regarding its assertion that the 30-year forecast assumes unrealistic “buildout”, FRONTLINES continues to challenge the inputs to this forecast but provides no reasonable alternative. The buildout of the region considered by this forecast utilizes publicly available land-use plans to determine the potential ultimate buildout of each area, which represent the best data available that can be used to infer potential development.

3. The ASP Will Not Cause or Add to Any N-1 Violations That Wouldn’t Otherwise Occur Regardless of Whether ASP Was Constructed.

FRONTLINES challenges SCE’s assessment that many of the ASP alternatives would cause N-1 overloads on the Valley South System over the long-term, claiming that ASP itself would do the same based on FRONTLINES’ “evaluation.”45 First, and as noted in SCE’s Planning Study, all of the alternatives considered by SCE were treated equally in that all N-1 violations were recorded and the associated Expected Energy Not Served (“EENS”) was accrued.

45 Attached to FRONTLINES’ Protest is an “evaluation” that was prepared in support of its arguments against SCE’s supplemental analysis demonstrating the need for the ASP. It is unclear who prepared this evaluation and what industry standards or methodologies it is based on, but based on a preliminary review, SCE has found numerous errors and misstatements. SCE reserves the right to oppose the assumptions and arguments made in FRONTLINES’ evaluation should it be determined that future testimony and briefing is required.
for all alternatives, including the ASP. This approach was chosen in order to ensure all alternatives are treated on an equal basis and to simplify the analysis by not requiring project estimates for correcting each violation. This was deemed to be an acceptable approach because neither the discounted costs for correcting N-1 violations, nor the monetized value of the EENS accrued for N-1 violations are significant relative to the overall project costs or total value of monetized benefits. The N-1 violations are used in assessing the relative robustness of the solutions in contributing to the overall margin and flexibility inherent to the alternatives. The ASP and SDG&E alternatives fare the best in this regard because they are located and transfer load within a current high load pocket in the Valley South System. Other alternatives located in the extreme northern and eastern parts of the system do not perform as well in this regard because of less dense load and fewer substation transfers.

Second, FRONTLINES’ allegation that SCE has not reported future line overloads that are projected to occur subsequent to constructing the ASP are false. As a preliminary matter, FRONTLINES makes this allegation without providing any power flow analysis but instead appears to base its assumptions on simple addition and subtraction, thus neglecting the dynamic nature of power system load flows. Regardless, contrary to FRONTLINES’ understanding, the ASP does not cause or add to any N-1 violations that would not otherwise occur even if ASP were not constructed. The majority of the 115 kV subtransmission lines emanating from Valley Substation serving the Valley South System are already of the highest standard conductor rating that SCE uses; however, many of the 115 kV lines further downstream in the system are not of the highest rated conductor and could still be upgraded as needed to address system issues as they appear in future system studies. The N-1 115 kV line overloads referenced are of lines that already exist, and which would be expected to occur under most of the various project alternatives (occurring soonest under the No Project Alternative). With limited exceptions, project alternatives that relieve loading of the Valley South System also serve to defer the

46 See, Item C (Planning Study), Section 6.0 attached as Exhibit “C” to SCE’s Motion to Supplement the Record (filed May 11, 2020).
projected overload conditions on the 115 kV lines. SCE recognizes that future upgrades (such as reconductoring projects of lower capacity conductor to greater capacity conductor) may be necessary under many, if not all, scenarios but that these identified needs were reflected as EENS in the relative analysis of the alternatives. This is to say, they were all treated similarly and with the same assumptions, and the overloads were not addressed with reconductoring projects but instead recorded as EENS.

G. **Proposed Schedule**

TURN and FRONTLINES object to SCE’s proposed schedule and suggest it be revised to accommodate additional environmental review. SCE maintains that the Commission should first evaluate SCE’s supplemental analyses to confirm the conclusions of those analyses. If the Commission concurs with SCE’s analysis, then no additional environmental review is necessary and an Addendum is the appropriate environmental document. If the CPUC finds that an Addendum is proper, SCE’s proposed schedule is appropriate.

The ASP environmental review process was initiated in 2009 when SCE filed the original Application. The CEQA portion of this proceeding produced a FEIR, and ultimately a Decision that took no action on the Alberhill Project and directed SCE to supplement the existing record with specific additional analyses related to project need and to examine additional alternatives.

SCE spent over a year compiling the information requested in the Decision. SCE’s analyses confirmed the continued need for the project, determined that no other alternatives would meet the project objectives as well as the ASP, and found each alternative would have environmental impacts greater than or similar to the ASP. SCE provided these additional analyses to the service list and to Energy Division as data request responses in May 2019, December 2019 and January 2020.

SCE’s analyses were submitted to the CPUC for inclusion in the record on May 11, 2020. The Commission is now tasked with confirming the conclusions of SCE’s analysis to determine whether an Addendum is appropriate, and if so, the CPUC should prepare an Addendum and approve the Alberhill System Project CPCN.
Respectfully submitted,

TAMMY JONES

/s/ Tammy Jones
By: Tammy Jones

Attorney for
SOUTHERN CALIFORNIA EDISON COMPANY

2244 Walnut Grove Avenue
Post Office Box 800
Rosemead, California 91770
Telephone: (626) 302-6634
E-mail: Tammy.Jones@sce.com

Dated: June 22, 2020
Question 04:
Please quantify and explain how SCE/Quanta factored Title 24 revisions (which require PV for all new residential construction projects beginning January 1, 2020) into the peak load forecast results presented in Tables 2-10 and 2-11.

Response to Question 04:

The 2018 Integrated Energy Policy Report (IEPR) accounts for the state mandate that all new residential buildings be equipped with solar. The 2018 California Energy Demand Forecast (CED) in the 2018 IEPR builds on the 2017 CED, which was the first forecast to incorporate the SB350 2019 Title 24 building standards that require all new homes to include the installation of solar panels (see pg. 240 of CEC-100-2018-001-V2) beginning in 2020. As the Spatial Load Forecast developed by Quanta includes the appropriate Additional Achievable Photovoltaic (AAPV) forecast to model future growth in PV, the Spatial Load Forecast does in fact incorporate the aforementioned 2019 Title 24 building standards. Table 2-2 of Quanta’s cost benefit report provides the peak modifying AAPV from 2019 to 2028. Growth rates for the years 2029 to 2048 are discussed in Section 2.3.1.
Attachment B

SCE response to Data Request Set FRONTLINES – SCE – 002, Question 12
Question 12:
12. On page 27 of 73, SCE states that its forecast is "based on peak load collected from historical data, normalized to a common temperature base in order to account for variations in peak temperatures from year to year". Further down this page, it states that SCE's forecast is determined from "the CEC’s IEPR-derived CED forecasts". In the data request response identified as "A.09-09-022 ED-Alberhill-SCE-JWS-4 Item A", SCE states on page 4 of 10 that its forecast is developed based on disaggregating the CED IEPR forecast, but that adjustments to the disaggregated values are made "based on SCE’s specific knowledge of local-area developments". After these adjustments, SCE makes further adjustments to address distributed PV generation that is "not coincident with electrical system peak demand timing" (page 4). On page 5, SCE states that it subsequently modifies the forecast by incorporating disaggregated DER forecasts from the IEPR to address "Energy Efficiency, Electric Vehicles, Energy Storage, and Demand Response", and that it then uses historical recorded load data to "inform" SCE's forecast. Regarding these statements:
 a) Please confirm whether the SCE forecast through 2028 that is graphed in figure 5-1 of SCE’s response identified as "A.09-09-022 CPUC-JWS-4 Q.01c Attachment 1 of 1_A.09-09-022 ED-Alberhill-SCE-JWS-4 Q.01c" is the same forecast that is presented in Table 1 of the SCE response identified as "A.09-09-022 ED-Alberhill-SCE-JWS-4 Item A". If they are not the same, please explain how they differ.
 b) For each year between 2019 and 2028, please identify the actual disaggregated value that was calculated for the Valley South system from the IEPR CED forecast which provided the base forecast for the values reported in Table 1 of the SCE response identified as "A.09-09-022 ED-Alberhill-SCE-JWS-4 Item A".
 c) For each year between 2019 and 2028, please identify the "adjustments" that were made to the values reported in response to item b above based on "SCE’s specific knowledge of local-area developments" and explain why these adjustments are reasonable.
 d) For each year between 2019 and 2028, please identify the "adjustments" that were made to the values reported in response to item b and/or c above to address distributed PV generation that is "not coincident with electrical system peak demand timing" and explain why they are reasonable.
 e) For each year between 2019 and 2028, please identify the actual DER value that was disaggregated from the IEPR for the Valley South system to address "Energy Efficiency, Electric Vehicles, Energy Storage, and Demand Response".
 f) For each value provided in response to item e above, state whether this value was simply added to the values provided in response to items b, c, and d above, or if they were "adjusted" first.
 g) For each disaggregated value that is reported as being "adjusted" in the response to item f above, please state how much the adjustment was and why it is reasonable.
h) Please identify any further "adjustments" that were made to the values provided in response to items b, c, d, e, f, and g above based on the historical recorded load data which "informed" SCE's forecast and explain why these further adjustments are reasonable.

i) Please identify any other adjustments made to the forecast values reported in Table 1 of the SCE response identified as "A.09-09-022 ED-Alberhill-SCE-JWS-4 Item A" that are not captured by items b, c, d, e, f, g, and h above and explain why they are reasonable.

j) If the base forecast and the adjustment values provided in response to items b, c, d, e, f, g, h and i above do not "add up" to the forecast values reported in Table 1 of the SCE response identified as "A.09-09-022 ED-Alberhill-SCE-JWS-4 Item A", please explain why.

Response to Question 12:

a) Yes, the two forecasts are the same.

b) Please see the data provided in the table below which provides the normal weather 1-in-2 heat storm condition incremental (year-over-year) base growth value (prior to any load-modifying adjustments for DERs etc.). IEPR-derived forecast values are disaggregated based on normal weather 1-in-2 year heat storm conditions. The applicable extreme weather heat storm condition (1-in-5 or 1-in-10) is adjusted after the disaggregation process. This is because normal weather conditions are applicable to all facilities and provide a normalized baseline for which different extreme weather condition adjustments are then applied depending on the level of electrical system being planning for.

<table>
<thead>
<tr>
<th>Valley South System</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Growth (MVA)</td>
<td>2.0</td>
<td>12.7</td>
<td>20.2</td>
<td>21.0</td>
<td>24.0</td>
<td>17.9</td>
<td>14.8</td>
<td>14.5</td>
<td>15.5</td>
<td>14.4</td>
</tr>
</tbody>
</table>

c) The “specific knowledge of local-are developments” is accounted for in the disaggregation of the IEPR-derived base load growth forecast. Awareness of new load growth projects in the area results from SCE’s system planning engineers working in concert with the local planning departments within SCE to determine what new construction activities are planned in each planning area.

As SCE must disaggregate a base load growth that is derived from the IEPR forecast, the disaggregation methodology takes into account the inputs related to expected new load growth developments from across SCE’s service territory and then allocates the demand accordingly to ensure compliance with the directive to align with the IEPR forecast. Specific adjustments are not made to the disaggregated IEPR-derived forecast, rather this specific local-area knowledge is used to inform the disaggregation process to ensure areas with expected load growth are allocated an appropriate share of the IEPR-derived demand forecast.

d) An adjustment is made to future projected PV installations identified in the PV forecast. As the forecast of future PV installations is provided in installed nameplate values (MW) which
does not represent an expected output value at a given system peak time, an adjustment must be made to predict what the amount of impact (peak reduction) the future installations will have and which can be relied upon for planning purposes. This adjustment is made by using region-specific PV curves and loading profile shapes. The amount of dependable PV used for planning purposes for future years is determined by applying the region-specific PV dependability curve to the loading profile shape at the time of the anticipated future peak. This is important as it incorporates the time-shift associated with the peak demand and ensures that the amount of PV used in planning is coincident with the peak load used in planning. These values are found in SCE’s response to Question 20 of this data request set.

e) Please see the data provided in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Valley South System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2019</td>
</tr>
<tr>
<td>Electric Vehicle (MVA)</td>
<td>0.8</td>
</tr>
<tr>
<td>Energy Efficiency (MVA)</td>
<td>-3.4</td>
</tr>
<tr>
<td>Energy Storage (MVA)</td>
<td>-1.0</td>
</tr>
<tr>
<td>Load Modifying/Demand Response (MVA)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

f) SCE system planning begins at the distribution circuit level of the electrical system. A profile for each DER type on the associated circuit is generated using the DER forecasted value and the associated DER shape. All load and DER profiles are 8,760 profiles that are coincident and then when added together they generate the net 8,760 profile (a composite of all inputs). The values SCE uses for peak planning purposes (and which are presented in the tables associated with the responses to part b) through part e) of this question) are the DER values from the peak time of the net profile for each year in the forecast. Thus, there are three main factors that determine the amount of DER that is used in planning: the forecasted gross peak load, the forecasted DER value, and the DER shape. The values at the circuit level are then aggregated up through the system to the distribution substations for their associated peaks. The values of the distribution substations are then aggregated up to the transmission substations for their associated peak.

g) All adjustments are made using the associated DER shape for that year. Each asset has a unique DER value in the forecast year and each DER has an associated shape in that year. The amount of DER that is used for peak planning purposes is the value coincident to the peak time of the load in that forecast year. As mentioned in the response to part f) of this question, there are three main factors that determine the amount of DER used in planning: the forecasted gross peak load, the forecasted DER value, and the DER shape. The adjustments made are determined by the application of shapes and profiles and are not manual adjustments performed by system planners. This method of time-series profile/shaped based planning has been peer reviewed by the Distribution Forecasting
Working Group and determined to be reasonable.

h) No additional adjustments were made to the DER values based on historical recorded load data.

i) An additional element of system planning activities that may impact the forecast values include load transfers from one system to another system. Provided in the table below are the respective values by year for this category.

<table>
<thead>
<tr>
<th>Valley South System</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfers [MVA]</td>
<td>-7.1</td>
<td>-1.3</td>
<td>-0.4</td>
<td>-3.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

j) The values provided in SCE’s responses to the parts b) through h) of this question will not add up to the values provided in Table 1 of the SCE response identified as "A.09-09-022 ED-Alberhill-SCE-JWS-4 Item A". This is for the following reasons.

1. The values provided in the responses to parts b) through h) are the incremental year-over-year normal weather 1-in-2 year heat storm values of each item asked. These values must be added to the prior year’s final projected normal weather 1-in-2 heat storm value to obtain the current year’s normal weather 1-in-2 year heat storm value.

2. The values in Table 1 "A.09-09-022 ED-Alberhill-SCE-JWS-4 Item A" are 1-in-5 year heat storm values. This adjustment is made after all normal weather 1-in-2 year heat storm values are summed up.

3. No part of this question requested the amount of dependable PV included by year, rather only the amount of projected nameplate additions by year of PV as derived from the IEPR forecast. However, the amount of dependable PV is provided in SCE’s response to Question 20 of this data request set.

4. Additionally, no part of this question requested the amount by year of load transfers (via distribution circuit transfers) from/to the Valley South System. However, this data is provided in the response to part i) of this question.

However, taking the values found in Table 1 of the SCE response identified as "A.09-09-022 ED-Alberhill-SCE-JWS-4 Item A" (which are 1-in-5 year heat storm values) and dividing by the 1-in-5 year heat storm adjustment multiplier (i.e., 1.076 or 107.6% of the normal weather 1-in-2 year storm value) will derive the normal weather 1-in-2 year storm value for each year (2019-2028).

Then, to arrive at the first year of the 10-year forecast (2019), it requires using the prior year
(2018) normal weather 1-in-2 heat storm value of 1,039 MVA) as a starting point. Add to this value the incremental annual values (provided in SCE’s responses to parts b) through h) and including the data referenced in SCE’s responses to parts i) and j) of this question) to arrive at the next year’s project normal weather 1-in-2 year heat storm value. Through this method, all 10-years of normal weather 1-in-2 year heat storm values can be derived. Then, once multiplied by the 1-in-5 year heat storm adjustment multiplier, these values will match with what is in Table 1 of the SCE response identified as "A.09-09-022 ED-Alberhill-SCE-JWS-4 Item A". SCE notes that this approach of summing up the individual components of the net forecast (after separating them out in response to this question) yields slight discrepancies between the summed values and the values in Table 1. This is a result of rounding errors and is of no consequence to either the need of the project or the need date. As an example, the highest difference in any of the 10 years is approximately 1.5 MVA (out of over 1,160 MVA) or about 0.1%.
Attachment C

Data Request Set FRONTLINES – SCE – 002, Question 22
Question 22:
Section A-3 asserts that SCE's forecast uses load modifiers based on IEPR data disaggregated down to the circuit level, then SCE applies “solar PV dependability” curves to further adjust PV. Regarding this:

a) Does SCE apply its "solar PV dependability curve" to the disaggregated IEPR load modifiers? If so, by how much does SCE reduce the disaggregated IEPR PV values?
b) If the answer to a is no, to what does SCE apply its "Solar PV dependability" curves?

Response to Question 22:
a) The IEPR load modifiers are used at the SCE system level to determine the amount of load to be served by SCE distribution circuits. The load modifiers remove the municipalities, co-ops, and other utilities that do not serve SCE customers directly from the distribution system.

SCE does not apply its “solar PV dependability curve” to the disaggregated load modifiers through its disaggregated PV forecast process. SCE’s disaggregated PV forecast starts with the values given in the IEPR forecast at the SCE system level. The PV forecast utilizes the Mid-Case Behind-the-Meter PV Capacity (MW) forecast to determine the annual incremental increase of nameplate solar capacity. This forecast is then allocated to each distribution circuit. As a result, the disaggregated PV capacity forecasts at the circuit level sum up or conform to the total IEPR forecasted PV capacity at the system level.

After the disaggregated circuit-level PV forecast is established, SCE applies the specific PV hourly profiles to shape the PV capacity forecast. Rather than using CEC’s system-level hourly PV profile, SCE uses its own updated regional PV dependability curves to represent SCE’s regional PV hourly profiles and applied them to the circuit-level PV capacity forecast to generate the hourly or 8,760 PV forecast at each circuit.

Overall, SCE’s use of PV dependability curves would generate less peak load reduction impact for each circuit from the disaggregated IEPR PV capacity forecast. However, it does not impact the disaggregated PV capacity forecast that is consistent with IEPR system level forecast.

b) N/A
Attachment D

SCE response to Data Request Set FRONTLINES – SCE – 002, Question 18
Question 18:
Are the curves provided in response to question 17 the same curves that SCE refers to on page 19 and footnote 27 in SCE’s amended report of the "2019 Grid Needs Assessment and 2019 Distribution Deferral Opportunity Report" (found here: http://www3.sce.com/sscc/law/dis/dbattach5e.nsf/0/F8F550647FB95BBE8825845F0063A27F/$FILE/R1408013-SCE%20Amended%202019%20GNA%20and%202019%20DDOR%20Reports%20Public.pdf)? If not, how are they different?

Response to Question 18:

Yes, these curves are the same.
BEFORE THE PUBLIC UTILITIES COMMISSION OF THE
STATE OF CALIFORNIA

In the Matter of the Application of SOUTHERN CALIFORNIA EDISON COMPANY (U 338-E) for a Certificate of Public Convenience and Necessity for the Alberhill System Project. A.09-09-022

CERTIFICATE OF SERVICE

I hereby certify that, pursuant to the Commission’s Rules of Practice and Procedure, I have this day served a true copy of SOUTHERN CALIFORNIA EDISON COMPANY’S (U 338-E) REPLY TO PROTESTS TO THE SECOND AMENDED APPLICATION OF SOUTHERN CALIFORNIA EDISON COMPANY FOR A CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR THE ALBERHILL SYSTEM PROJECT, on all parties identified on the attached service list(s) for A.09-09-022. Service was effected by one or more means indicated below:

☒ Transmitting the copies via e-mail to all parties who have provided an e-mail address.

☒ Placing the copies in sealed envelopes and causing such envelopes to be delivered by U.S. Mail to the offices of the assigned ALJ or other addressee(s).

ALJ Hallie Yacknin
California Public Utilities Commission
505 Van Ness Avenue
San Francisco, CA 94102

Executed on June 22, 2020, at Hacienda Heights, California.

/s/ Kelly Morikawa Kwong
Kelly Morikawa Kwong
Legal Administrative Assistant
SOUTHERN CALIFORNIA EDISON COMPANY
2244 Walnut Grove Avenue
Post Office Box 800
Rosemead, California 91770
CALIFORNIA PUBLIC UTILITIES COMMISSION
Service Lists

PROCEEDING: A0909022 - EDISON - TO CONSTRUC
FILER: SOUTHERN CALIFORNIA EDISON COMPANY (U338E)
LIST NAME: LIST
LAST CHANGED: JUNE 10, 2020

Download the Comma-delimited File
About Comma-delimited Files

Back to Service Lists Index

Parties

TAMMY JONES JACQUELINE AYER
SR. ATTORNEY 2010 WEST AVENUE K, SUITE 701
SOUTHERN CALIFORNIA EDISON COMPANY LANCASTER, CA 93536
2244 WALNUT GROVE AVE./ PO BOX 800 FOR: FOREST RESIDENTS OPPOSING NEW
ROSEMEAD, CA 91770 TRANSMISSION LINES (FRONTLINES)
FOR: SOUTHERN CALIFORNIA EDISON COMPANY

MARION PELEO JOSEPH P. COMO
CALIF PUBLIC UTILITIES COMMISSION ATTORNEY
LEGAL DIVISION LAW OFFICE OF JOSEPH COMO
ROOM 4107 2340 WARD ST. STE 105
505 VAN NESS AVENUE BERKELEY, CA 94705
SAN FRANCISCO, CA 94102-3214 FOR: TURN
FOR: PUBLIC ADVOCATES OFFICE (FORMERLY ORA)

DAVID KATES
DAVID MARK & COMPANY
3510 UNOCAL PLACE, SUITE 200
SANTA ROSA, CA 95403
FOR: THE NEVADA HYDRO COMPANY

Information Only

CLARE LAUFENBER GALLARDO KEITH WHITE
STRATEGIC TRANSMISSION INVESTMNT PROGRAM KD WHITE CONSULTING
CALIFORNIA ENERGY COMMISSION EMAIL ONLY
LEGAL DIVISION
CPUC
EMAIL ONLY
EMAIL ONLY, CA 00000

GRANT YOUNG
SR ENVIRONMENTAL SCIENTIST
ECOLOGY & ENVIRONMENT
5665 FLATIRON PARKWAY, STE 250
BOULDER, CO 80301

KAZEM ELSHAFIE
8051 MAIN STREET
STANTON, CA 90680

IAN FORREST
SR. ATTORNEY
SOUTHERN CALIFORNIA EDISON COMPANY
2244 WALNUT GROVE AVE. / PO BOX 800
ROSEMEAD, CA 91770

JOHN W. LESLIE, ESQ
ATTORNEY
DENTONS US LLP
EMAIL ONLY
EMAIL ONLY, CA 92121

TIM LYONS
REGULATORY AFFAIRS
SAN DIEGO GAS & ELECTRIC COMPANY
8330 CENTURY PARK CT, CP32F
SAN DIEGO, CA 92123-1530

GENE FRICK
4271 BAGGETT DR
RIVERSIDE, CA 92505

E.J. SINGELYN
PO BOX 489
LAKE ELSINORE, CA 92530
FOR: EDWARD SINGELYN

GRANT TAYLOR
CITY OF LAKE ELSINORE
130 SOUTH MAIN STREET

EMAIL ONLY
EMAIL ONLY, CA 00000

AMY DICARLANTONIO
PROJECT MGR / SR GRP LEADER
ECOLOGY & ENVIRONMENT
340 S. BROADWAY, SUITE 200
LEXINGTON, KY 40508

KEN EOH
PACIFIC GLOBAL DEVELOPMENT
500 SHATTO PLACE NO 320
LOS ANGELES, CA 90020

CASE ADMINISTRATION
LAW DEPARTMENT
SOUTHERN CALIFORNIA EDISON COMPANY
2244 WALNUT GROVE AVE., PO BOX 800
ROSEMEAD, CA 91770

DONALD C. LIDDELL
ATTORNEY
DOUGLASS & LIDDELL
2928 2ND AVENUE
SAN DIEGO, CA 92103

SHIVANI SIDHAR
REGULATORY CASE MGR.
SAN DIEGO GAS & ELECTRIC COMPANY
8330 CENTURY PARK COURT, CP32F
SAN DIEGO, CA 92123

EVELYN F. HEIDELBERG
CROSBIE GLINER SCHIFFMAN SOUTHARD...
12750 HIGH BLUFF DRIVE, SUITE 250
SAN DIEGO, CA 92130

TONYA PACE
HOGLE-IRELAND INC.
1500 IOWA AVE. STE 110
RIVERSIDE, CA 92507
FOR: HOGLE-IRELAND INC.

GABRIEL COUTINO
28102 STONEHOUSE RD.
LAKE ELSINORE, CA 92530

KEN NIEMI
17032 MCBRIDE
LAKE ELSINORE, CA 92530
LAKE ELSINORE, CA 92530

LINDA RIDENOUR
33628 BRAND AVE
LAKE ELSINORE, CA 92530

MIKE PALMER
33281 ORTEGA HIGHWAY
LAKE ELSINORE, CA 92530

MODESTO MARTINEZ
28100 STONE HOUSE ROAD
LAKE ELSINORE, CA 92530

CALLISTA FURNELL
28480 REDGUM DR.
LAKE ELSINORE, CA 92532

CARMEN M. DA COSTA TARR
28164 STONEHOUSE RD.
LAKE ELSINORE, CA 92532

ELIZABETH HENSON
28211 LEONA DR.
LAKE ELSINORE, CA 92532

JAMES KOSKI
18711 TERETICORNIS AVE.
LAKE ELSINORE, CA 92532

JOHN COSTA
28131 LEONA DRIVE
LAKE ELSINORE, CA 92532

JOHN EARL THOMPSON
28546 HAYGOOD WAY
LAKE ELSINORE, CA 92532

JOSE R. MARTINEZ
18553 MERMAK AVE.
LAKE ELSINORE, CA 92532

MARY-RITA-APPLEMAN-THOMPSON
28546 HAYGOOD WAY
LAKE ELSINORE, CA 92532

MICHAEL MCDONALD
28162 STONEHOUSE RD.
LAKE ELSINORE, CA 92532

FOR: MARY-RITA APPLEMAN-THOMPSON

MIKE MATTHEWS
29026 ALLAN STREET
LAKE ELSINORE, CA 92532

PAUL G. TARR
28164 STONEHOUSE RD.
LAKE ELSINORE, CA 92532

PEDRO MARTINEZ
28277 ROSTRATA
LAKE ELSINORE, CA 92532

ROMAIN DIAZ
28375 ROSTRATA AVE
LAKE ELSINORE, CA 92532

STEPHANIE MC NEAL
28310 VIA DOROTHEA
LAKE ELSINORE, CA 92532

SUSEN LENCON
18600 MERMACK RD.
LAKE ELSINORE, CA 92532

TARRY MC NEAL
28310 VIA DOROTHEA
LAKE ELSINORE, CA 92532

TERRENCE FURNELL
18450 FURNELL RD.
LAKE ELSINORE, CA 92532

TERRENCE SMITH
28281 ROSTRATA
LAKE ELSINORE, CA 92532

VICEN TEARECHIGA
28100 STONEHOUSE
LAKE ELSINORE, CA 92532

FOR: TERRENCE THOMAS SMITH

VIRGINIA SAIREDREZ
28195 LEONAST

NORMAN D. GRITTON
27245 HWY. 74
FOR: TURN

BARRY R. FLYNN
FLYNN RESOURCE CONSULTANTS, INC.
5440 EDGEVIEW DRIVE
DISCOVERY BAY, CA 94505

ALEX J. MORRIS
EXE. DIR.
CALIFORNIA ENERGY STORAGE ALLIANCE
2150 ALLSTON WAY, STE.400
BERKELEY, CA 94704

DAVID PEFFER
BRAUN BLAISING MCLAUGHLIN & SMITH, P.C.
915 L STREET, SUITE 1480
SACRAMENTO, CA 95814

SCOTT BLAISING
ATTORNEY
BRAUN BLAISING MCLAUGHLIN & SMITH, P.C.
915 L STREET, STE. 1480
SACRAMENTO, CA 95814
FOR: CITY OF CORONA (CORONA)

State Service

CONNIE CHEN
CALIFORNIA PUBLIC UTILITIES COMMISSION
DRA
EMAIL ONLY
EMAIL ONLY, CA 00000

CHARLES MEE
CALIF PUBLIC UTILITIES COMMISSION
ELECTRIC SAFETY AND RELIABILITY BRANCH
ROOM 4102
505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3214

EHREN SEYBERT
CALIF PUBLIC UTILITIES COMMISSION
ADMINISTRATIVE LAW JUDGE DIVISION
ROOM 5041
505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3214

JOSEPH A. ABHULIMEN
CALIF PUBLIC UTILITIES COMMISSION
ENERGY INFRASTRUCTURE BRANCH
ROOM 4209

MARTHA GUzman Aceves
OFFICE OF COMMISSIONER GUZMAN ACEVES
CPUC - EXEC. DIV.
EMAIL ONLY
EMAIL ONLY, CA 00000

CHLOE LUKINS
CALIF PUBLIC UTILITIES COMMISSION
ENERGY INFRASTRUCTURE BRANCH
ROOM 4102
505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3214

HALLIE YACKNIN
CALIF PUBLIC UTILITIES COMMISSION
ADMINISTRATIVE LAW JUDGE DIVISION
ROOM 5108
505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3214

MARCELO POIRIER
CALIF PUBLIC UTILITIES COMMISSION
ADMINISTRATIVE LAW JUDGE DIVISION
ROOM 5023